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Abstract
We exploit a well-known isomorphism between complex Hermitian 2 × 2
matrices and R

4, which yields a convenient real vector representation of qubit
states. Because these do not need to be normalized we find that they map onto
a Minkowskian future cone in E

1,3, whose vertical cross-sections are nothing
but Bloch spheres. Pure states are represented by light-like vectors, unitary
operations correspond to special orthogonal transforms about the axis of the
cone, positive operations correspond to pure Lorentz boosts. We formalize
the equivalence between the generalized measurement formalism on qubit
states and the Lorentz transformations of special relativity, or more precisely
elements of the restricted Lorentz group together with future-directed null
boosts. The note ends with a discussion of the equivalence and some of its
possible consequences.

PACS numbers: 03.30.+p, 03.65.−w, 03.67.−a

1. Preliminaries and geometrical setting

This article may be viewed as a complement to conal representations of quantum states [1].
This section reproduces some of the material in a concise manner, in an attempt to make the
presentation self-contained.

The state of a two-dimensional quantum system (a qubit) is an element of Herm+
2(C) the

set of 2 × 2 positive complex matrices [2]. Traditionally one tends to consider normalized
states only, i.e. unit trace Herm+

2(C) matrices (density matrices). Yet relaxing this condition
has a clear physical meaning and we will often do so in this note. The most general evolution a
qubit state may undergo is a generalized measurement (the only extra feature Kraus operators
allow is the possibility to ignore one’s knowledge of some measurement outcomes). These are
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described by a finite set {Mm} of 2 × 2 complex matrices satisfying
∑

m M
†
mMm = I. If we

let Em = M
†
mMm we have that

∑
m Em = I, Em ∈ Herm+

2(C) and Mm = Um

√
Em using the

polar decomposition. Applied upon a density matrix ρ, the generalized measurement {Mm}
yields outcome m with probability p(m) = Tr(Emρ), in which case the post-measurement
state is given by ρ ′

m = (1/Tr(Emρ))
(
MmρM

†
m

)
. We shall call ρm = MmρM

†
m ∈ Herm+

2(C)

the unrescaled post-measurement state. Note that the generalized measurement formalism
can be viewed as arising when the system is first coupled to an ancilla (through a unitary
operation), which then gets measured projectively and discarded. We take the more axiomatic
view on generalized quantum measurements.

Let {σµ}µ=0...3 designate the set of the Pauli matrices I, X, Y and Z. These form a Hilbert–
Schmidt orthogonal basis of 2 × 2 Hermitian matrices, that is ∀µ, ν Tr(σµσν) = 2δµν with δ

the Kronecker delta. Thus any matrix A ∈ Herm2(C) decomposes on this basis as

A = (1/2)(Tr(A)I + Tr(Aσi)σi) = (1/2) Tr(Aσµ)σµ.

Note that throughout this paper Latin indices run from 1 to 3, Greek indices from 0 to 3, and
repeated indices are summed unless specified. Letting Aµ = Tr(Aσµ), we shall call A the

vector (Aµ) ∈ R
4 while

−→
A = (Ai) will designate the restricted vector in R

3. Note that the
coordinate map

φ : Herm2(C) → R
4 A �→ A

is an isometric isomorphism, in the sense that

Tr(AB) = 1
2A · B ≡ 1

2 AµBµ. (1)

Lemma 1. The cone of positive Hermitian matrices Herm+
2(C) is isomorphic to the following

cone of revolution in R
4:

� =
{

(λµ) ∈ R
4/λ2

0 −
3∑

i=1

λ2
i � 0, λ0 � 0

}
.

Generalized pure states lie on the boundary of �.

Proof. Let A ∈ Herm2(C). Its eigenvalues are given by λ± = 1
2 (A0 ± √

AiAi). A is positive
if and only if λ+λ− � 0 and λ+ + λ− � 0. This is equivalent to

ηµνAµAν � 0 and A0 � 0

with ηµν = Diag(1,−1,−1,−1). Moreover A is generalized pure when one of its eigenvalues
is zero, which is equivalent to ηµνAµAν = 0. �

Thus the generalized (not necessarily normalized) density matrices of a qubit cover the
whole Minkowskian future-light-cone in E

1,3. Taking a vertical cross-section of the cone is
equivalent to fixing the trace A0 of the density matrix, which might be thought of physically
as the overall probability of occurrence for the state. By doing so we are left with only the
spin degrees of freedom along X, Y and Z, and therefore each vertical cross-section is a Bloch
sphere with radius a = A0 (see below).

Where the use of Clifford algebras is encountered such a representation is not totally
uncommon. We think, for instance, of the community of geometric algebras [3]. Furthermore
φ−1 is precisely the isomorphism used to define Dirac spinors [4] in quantum field theories.
For n-dimensional extensions of the representation we refer the reader to [1] and [5] .

We now consider the map ψ from 2 × 2 complex matrices to endomorphisms of R
4 given

by

ψ : A �→ φ ◦ AdA ◦ φ−1
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Figure 1. Conal representation of qubit states.

i.e. ψ(A) is the 4 × 4 real matrix taking a vector ρ into AρA†. Note that ψ(AB) = ψ(A)ψ(B).
Amongst the standard results [2] we have that ψ(U), with U unitary, is a special orthogonal
transform about the axis of revolution of the cone �. Indeed without loss of generality one
can assume det(U) = 1, and so the special unitary matrix can be written as

U = cos

(
θ

2

)
I − i sin

(
θ

2

)
(−→nk σk) = e−i θ

2
−→nk σk (2)

and has image

ψ(U) =
(

1 0
0 Rθ(

−→n )

)
.

Here Rθ(
−→n ) denotes the real rotation by an angle θ around the normalized axis −→n (to happen in

the Bloch sphere). Alternatively one may use the expression ψ(U)µν = (1/2)Tr(UσνU
†σµ).

The next formulae are not well known.

Lemma 2. Let
√

Em be a matrix in Herm+
2(C), with

√
Em = [α β γ δ], and Em its square,

with Em = [a x y z]. Then

ψ(
√

Em) = 1

4


−X+2α2 2αβ 2αγ 2αδ

2αβ X+2β2 2βγ 2βδ

2αγ 2βγ X+2γ 2 2γ δ

2αδ 2βδ 2γ δ X+2δ2



= 1

4


2a 2x 2y 2z

2x X+ 4x2

2a+X

4xy

2a+X
4xz

2a+X

2y
4xy

2a+X
X+ 4y2

2a+X

4yz

2a+X

2z 4xz
2a+X

4yz

2a+X
X+ 4z2

2a+X

 (3)

with

X = α2 − β2 − γ 2 − δ2 = 2
√

a2 − x2 − y2 − z2.

Proof. ψ(
√

Em) can be computed in terms of
√

Em using the following simple formula:

ψ(
√

Em)µµ′ = (1/2)
√

Em
ν

√
Em

ν′ Tr(σνσµ′σν′σµ).

This method requires lengthy calculations, subtler approaches are discussed in [1]. Now let
ι = [1 0 0 0] = (1/2)φ(I) and observe that

ψ(
√

Em)ι ≡ φ ◦ Ad√
Em

◦ φ−1ι

= (1/2)φ(
√

EmI
√

Em) ≡ (1/2)Em. (4)
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In other words, (1/2)Em has as components the first column of ψ(
√

Em). Thus we can now
proceed to the substitutions which yield the second form of ψ(

√
Em). Finally the X relation

stems from

ηµν

√
Em

µ

√
Em

ν
= 4det(

√
Em)

= 4
√

det(Em) = 2
√

ηµνEmµ
Emν

. (5)

�

2. Quantum operations as Lorentz transforms and vice versa

We begin by showing that elements of a generalized measurement act on a qubit either as
rescaled restricted Lorentz transformations or as rescaled future-directed null boosts. Then
we show that the reverse is also true. Remember that a Lorentz transform L ≡ Lµ

ν is called
restricted if it is proper (det L = 1) and orthochronous

(
L0

0 > 0
)
. We will show that such

an L decomposes uniquely into the product of a proper spatial rotation and a pure (timelike
future-directed velocity) boost. We like to think of null velocity boosts as limiting cases
of restricted boosts, or effectively as elements of the topological boundary of the restricted
Lorentz group, but they need to be rescaled to yield a finite linear transform. We shall call
these (rescaled) future-directed null boosts. They are singular transforms. It turns out that the
rescaling introduced defines a natural unifying way of thinking about Lorentz transforms and
null boosts.

If Em = [a, x, y, z] corresponds to one particular measurement element Em =
M

†
mMm, we shall call Vm the vector of coordinates

(
Vmµ

) = (
1
2ηµνEmν

)
, i.e. Vm =

[a/2,−x/2,−y/2,−z/2]. Then vm = 2Vm/a is the corresponding normalized vector and−→vm = [−x/a,−y/a,−z/a] can be thought of as a three-vector velocity, whose norm is defined
as usual: vm = (−→vm · −→vm)1/2.

Proposition 1. Let {Mm} = {Um

√
Em} be a generalized measurement on a qubit, with Um

unitary and
√

Em positive. Then for all m such that Em is not projective, we have

ψ(Mm) =
√

ηµνVmµ
Vmν

RmL(vm) (6)

where Rm = ψ(Um) is a proper rotation about the axis of the cone and L(vm) is a pure
restricted Lorentz boost of normalized velocity vm. Thus ψ(Mm) is a restricted Lorentz
transform up to a (strictly positive) scalar. Similarly, if Em is projective, ψ(Mm) =
(a/2)RmL(vm), where L(vm) is a rescaled pure future-directed null boost of null velocity vm.

Proof. First recall that ψ(Mm) = ψ(Um)ψ(
√

Em), and by (2), ψ(Um) is a special orthogonal
transformation about the axis of the cone, so a restricted Lorentz transform. Suppose Em

(hence vm) timelike future-directed. Letting γ ≡ 2a/X in (3) and using the definition of −→vm,
we get

4

X
ψ(

√
Em) =

(
γ −γ−→vm

T

−γ−→vm I + γ 2

1+γ
−→vm

−→vm
T

)
≡ L(vm). (7)

As γ = 1/
√

1 − v2
m,L(vm) is precisely a pure Lorentz boost of velocity vm (see [4] for

example). Since vm is timelike future-directed, ψ(Mm) is a restricted Lorentz transform up to

the factor X/4 = (1/2)
√

ηµνEmµ
Emν

=
√

ηµνVmµ
Vmν

.
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Now, when Em is null (Em projective) this factor vanishes and γ becomes infinite.
Nevertheless one can write (3) for X = 0 as

2

a
ψ(

√
Em) =

(
1 −−→vm

T

−−→vm
−→vm

−→vm
T

)
. (8)

We can see that this is in fact a pure null boost rescaled by a factor γ −1. Indeed, when vm → 1
the right-hand side of (7) becomes

Lnull(vm) ∼ γ

(
1 −−→vm

T

−−→vm
−→vm

−→vm
T

)
and since a

2 = γ
√

ηµνVmµ
Vmν

, we precisely get

ψ(
√

Em) ∼
√

ηµνVmµ
Vmν

Lnull(vm).

Here the Minkowski product vanishes and the unrescaled pure null velocity boost is infinite.
Nevertheless rescaling Lnull(vm) by the factor γ −1 yields the right-hand side of (8); thus
ψ(

√
Em) indeed corresponds to a rescaled pure null boost, which of course is not an element

of the Lorentz group. �

As we said previously the natural rescaling by the Minkowski product precisely
corresponds to an appropriate rescaling of generalized Lorentz transforms bringing null
boosts to finite linear maps. Formally, the essence of this proposition can be thought of
as a consequence of the Alexandrov–Zeeman theorems relating the causality group (Lorentz
group and dilatations) to the Minkowskian causal structure, though this approach would not
cover null velocity boosts. Note that the rescaled pure null velocity boosts (right-hand side of
(8)) are in fact proportional to projections on the null four-vectors Em.

Maybe the reader wonders here why the Lorentz pure boosts corresponding to positive
measurement elements Em are parametrized by vm and not Em. However, since Em is an
operator acting on states and not a state, Em is better thought of as a co-vector, or element of
the dual space, in the same way as momenta are dual to positions in usual special relativity.
The (contravariant) vector corresponding to Em is precisely 2Vm, thus in the space of states,
and not operators, Em is represented by 2Vm. The factor of two was introduced merely for
convenience.

The following relations suggest that the Minkowski product of the state vector of a qubit
is an important quantum information theoretical quantity:

Proposition 2. Let {Mm} be a generalized measurement, ρ a state vector and ψ(Mm)ρ ≡ ρm

the unrescaled post-measurement state vector if outcome m occurs. We have

ηµνρm
µ
ρm

ν
= ηµνVmµ

Vmν
ηµ′ν′ρ

µ′ρν′ (9)

ρm 0
= ηµνVmµ

ρ
ν

(10)

ηµνρ
µ
ρ

ν
= 2([Tr(ρ)]2 − Tr(ρ2)). (11)

Proof. We make use of the previous proposition. Equation (6) implies

ηµνρm
µ
ρm

ν
= ηµνVmµ

Vmν
ηµ′ν′ (RmL(vm)ρ)µ′(RmL(vm)ρ)ν′

and (9) follows since RmL(vm) is a Lorentz transform. This relation remains true of course
when Vm is light-like (Em projective), since so is ρm. (Purity relations [1].)
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For the second equation note that ρm0
= Tr(Emρ) = (1/2)Em · ρ, where the isometry (1)

was applied. Introducing the definition of Vm in this last equation yields the required result.
Equation (11) can be shown explicitly using the components of ρ and ρ2, but it

seems more interesting to use our isomorphism φ : ρ → ρ. Consider the linear map on

E
1,3,� : (ρ

µ
) → (ηνµρ

ν
) (musical isomorphism). Then �̃ : ρ → φ−1 ◦ � ◦ φ(ρ) is a linear

map on Herm2(C). One finds easily �̃(ρ) = (Trρ)I − ρ. Using the fact that φ is an isometry
(1), we get

ηµνρ
µ
ρ

ν
≡ (�ρ) · ρ = 2Tr(�̃(ρ)ρ) = 2([Trρ]2 − Tr(ρ2)). �

It seems interesting that this quantity, invariant under Lorentz transforms on the state vector
ρ, in fact measures the mixedness of qubit states: recall that a density matrix ρ is pure if and
only if Tr(ρ2) = (Trρ)2. Not only is purity preserved under a formal Lorentz boost, so is
this notion of mixedness. Moreover, this quantity maps according to the simple relation (9)
under a generalized measurement. Note that since ηµνVmµ

Vmν
� 1, the mixedness always

decreases given a measurement outcome. But (9) and (10) suggest much more: the mixedness
of post-measurement states and their probabilities are invariant if both the initial vector ρ

and the measurement vectors Vm are Lorentz transformed. However, the set of transformed
measurement vectors does not sum to the identity, and it is unclear how to interpret it as a
quantum measurement. In section 3 we will discuss the way a boosted observer perceives
measurement probabilities, but without using the approach equation (10) might suggest. We
now show that any Lorentz transformation can be thought of as an element of a generalized
measurement up to scale.

Proposition 3. Let L be a restricted Lorentz transform or a rescaled future-directed null boost
of E

1,3. L decomposes as L = RL(v) where R is a proper Lorentz rotation and L(v) a pure
velocity boost, rescaled when v is null. Then there exits a particular element of a measurement
scheme {Mm},M1 say, such that for any qubit ρ,

Lρ ∝ ψ(M1)ρ. (12)

Thus the effect of a Lorentz boost on a qubit can essentially be viewed as applying a particular
measurement element whose outcome occurs. More precisely there exits a family of such
possible measurement elements M(λ) = U

√
E(λ) defined by U = U(R) as in (2) and

√
E(λ)

satisfying the following:
If L = RL(v) is a restricted Lorentz transform,√

E(λ) = (1 +
√

1 − v2)−1/2[λ(1 +
√

1 − v2),−λ−→v ] with 0 < λ �
√

2

1 + v

while if L = RL(v) is a rescaled future-directed null boost√
E(λ) = [λ,−λ−→v ] with 0 < λ � 1.

Proof. For completeness we first show the decomposition of restricted Lorentz transforms L
into L = RL(v) as above. This relies on the well-known spinor representation of the restricted
Lorentz group, or the two-to-one group homomorphism between unimodular 2 × 2 complex
matrices and restricted Lorentz transforms (see [4] for example):

ψ : SL(2, C) → SO(1, 3)+

A �→ ψ(A) ≡ φ ◦ AdA ◦ φ−1.

Indeed as AdA preserves the determinant and φ is such that for all ρ ∈ Herm2(C), det ρ =
(1/4)ηµνρ

µ
ρ

ν
, ψ(A) preserves the Minkowski product. The fact that ψ(A) ∈ SO(1, 3)+
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and that ψ is two-to-one and onto can be checked explicitly. Let L be any restricted Lorentz
transform. There exits a unique A ∈ SL(2, C) such that ψ(±A) = L. Polar decompose A

into A = U |A| with U unitary and |A| positive. (U is in fact special unitary and |A| positive
definite since detA = 1, and by unicity of the polar decomposition for A non-singular,
−A = (−U)|A|.) Applying proposition 1 to |A| with det|A|2 = 1, ψ(|A|) is a pure restricted
Lorentz boost, thus L = ψ(U)ψ(|A|) provides a decomposition. Since ψ(U) = ψ(−U), this
decomposition is unique.

Thus given L = RL(v), with R a proper rotation and L(v) a pure boost of future-directed
timelike velocity v = [1,−→v ], we use proposition 1 to find M = U

√
E such ψ(M) ∝ L.

U = U(R) is given by (2) and we choose E = [1,−−→v ].
We then have to find λ > 0 such that λM can be part of a measurement scheme. This

is equivalent to λ2M†M positive (satisfied) and I − λ2M†M positive too. (λM and −λM are
equivalent in terms of measurement elements.) With λM = U

√
E(λ), we have

E(λ) = [λ2,−λ2−→v ]

from which we find
√

E(λ) using (4):√
E(λ) = (1 +

√
1 − v2)−1/2[λ(1 +

√
1 − v2),−λ−→v ].

Then requiring I − E(λ) positive is equivalent to (λ > 0)

λ �
√

2

1 + v
.

Applying proposition 1 we get

ψ(M(λ)) = λ2

2

√
1 − v2RL(v).

Thus for such λ the measurement elements M(λ) = U
√

E(λ) are all possible measurements
whose occurrence is equivalent up to a factor to the restricted Lorentz boost L = RL(v).

Now let L be a rescaled future-directed null boost. As we have shown, any restricted
Lorentz transform can be decomposed into a product of a proper rotation and a boost of
timelike future-directed velocity. Future-directed null boosts are just limits of these, and thus
the rescaled null boosts L may be assumed to be the product of a rotation R and a rescaled null
pure boost L(v) of type (8). The rotation can be dealt with as in the previous case. Defining
E = [1,−−→v ] null future-directed, we have L(v) ∝ ψ(φ−1(

√
E)). Then again we consider

E(λ) = λ2E (λ > 0) such that I − E(λ) is positive. This is equivalent to 0 < λ � 1, and
using (4) we have√

E(λ) = [λ,−λ−→v ]

which gives ψ(
√

M(λ)) = (λ2/2)RL(v). �

Note that the scaling factor is always less than 1, indeed less than
√

(1 − v)/(1 + v) in
the restricted case, and 1/2 in the null case.

Overall we have shown that elements of generalized measurements on a qubit are
equivalent to rescaled restricted or null Lorentz transforms. Projective measurement elements
are future-directed null boosts, while mixed ones correspond to restricted Lorentz boosts. One
can of course think of these linear transforms as elements or limits of elements of the causality
group of E

1,3.
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3. Discussion

The following is a somewhat original discussion of propositions 1 to 3. Our formalism and its
consequences suggest that qubit states may be viewed as spatio-temporal objects, or indeed
as four-vectors of a Minkowski spacetime. This differs only slightly from the notion of spin
as a spatial polarization direction, and thus may apply to two-dimensional quantum systems
whose degrees of freedom can be thought of as spacelike. We shall adopt this point of view
from now, i.e consider naively qubits as four-vectors, and analyse the physical implications.

Let us begin by merely rephrasing the content of the correspondence that was
established in section 2. Suppose Alice proceeds to a generalized measurement {Mm} =
{Um

√
Em},∑m M

†
mMm = I on a qubit density matrix ρ (ρ is unit trace). With probability

p(m) = Tr(Emρ) this will yield her a (non-normalized) post-measurement state ρm =
MmρM

†
m. This rather common situation turns out to be equivalent, according to proposition 1,

to the following less usual scenario.
Scenario 1. Suppose Alice is standing at the origin of an inertial frame of Minkowski

spacetime, contemplating the four-vector ρ. Say she gives herself a set of rotations {Rm} and
four-vectors {Vm} such that

∑
m Vm = [1 0 0 0]. Now, with probability p(m) = ηµνVmµ

ρ
ν

she chooses to Lorentz boost herself up to velocity vector vm = Vm/Vm0
, to rotate the

resulting space-frame by Rm and to rescale her coordinates by a factor of
√

ηµνVmµ
Vmν

(we

are assuming Em is not projective). She then looks back upon her object of contemplation and
sees ρm, the unrescaled post-measurement state. The case with Em projective is the limit of
the previous one when the boost vector vm becomes null, and the rescaling yields finiteness of
the corresponding linear transform.

Therefore a quantum measurement can be thought of, up to scale, as the observer taking a
Lorentz boost relative to his or her qubit. Note that applying a second quantum measurement
{Nn} similarly corresponds to the observer taking a second (successive) Lorentz transformation
at random amongst {Ln}, say. Thus qubit quantum mechanics can easily be axiomatized within
the mathematics of special relativity, and pure measurement elements go hand-in-hand with
future-directed null boosts.

Difficulties are prompt to arise when one seeks to equate a measurement interaction, in
which the qubit is physically acted upon, with a (somewhat passive) coordinate transformation
in Minkowski spacetime: indeed the latter is purely kinematical, thus reversible, whereas the
former usually implies a collapse of the state. In the following scenario we dissociate one
from the other. In other words we consider special relativity and qubit quantum theory in their
most usual fashion, save for the fact that we continue to interpret the spin as a four-vector.

Scenario 2. Suppose Alice at the origin of an inertial frame of Minkowski space, together
with a qubit density matrix ρ (unit trace) which we think of as a (normalized) spacetime
vector ρ. If we consider the point of view of Bob as he passes by in an inertial frame, this
suggests that Bob sees a boosted version of ρ, i.e. a state �ρ. This seemingly innocuous point
raises an important issue however: � is not restricted to Bloch sphere rotations, and thus may
indeed not correspond to a unitary operation. To understand its effect upon ρ we must refer to
proposition 3: � acts, up to a factor, as a measurement element M1 whose outcome always
happens, even though Tr

(
M1ρM

†
1

) �= 1. Thus {M1} can be thought of as a non-trace-

preserving quantum operation
(
M1M

†
1 �= I

)
which systematically occurs. We shall let

ρBob ≡ �ρ ∝ M1ρM
†
1 and proceed to reassure the reader that such a phenomenon would not

violate the principle of relativity. Bob does not make happen a non-trace-preserving quantum
operation on the qubit. The laws of quantum mechanics remain exactly the same in every
inertial frame: only the change of observers, or more precisely the way a boosted observer
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perceives a non-boosted state, is a non-orthodox quantum operation. If Bob were then to
decelerate down to the speed of Alice, his mathematical description of the qubit would return
to be ρ again.

Now suppose Alice measures ρ under a generalized measurement {Nn}. The probability
associated with the transition from ρ to ρn is given by p(n) ≡ Tr

(
N

†
nNnρ

)/
Tr(ρ) = ρn0

,

as usual when ρ is normalized. As Bob passes, he sees the initial state ρBob = �ρ, and the
post-measurement states ρBob

n = �ρn. Remember that the probability associated with a state
is simply given by the first component of its vector representation. Assuming � is a pure
boost of non-null normalized velocity v(�), we get

pBob(n) ≡ Tr
(
ρBob

n

)
Tr(ρBob)

=
ρBob

n 0

ρBob
0

= p(n) − −−→
v(�) · −→ρn

1 − −−→
v(�) · −→ρ

� 0.

In other words the probabilities associated with the transitions from ρ to ρn, in the same
way as lengths of objects, are not invariant under a change of observer. Thus if one believes
probabilities are absolute quantities independent of notions of space and time, one must
abandon trying to interpret the qubit as a four-vector.

Otherwise, the notion of probability as a physical quantity needs to be redefined (
∑

n p(n)

is not conserved, as the probability of a state transforms just like the time-component of a
four-vector). The idea is disturbing, and certainly worth comparing with the contraction of
any spatial object (a ruler, say) under a Lorentz boost. As he passes by Bob will see Alice’s
20 cm ruler shrunk down to 15 cm. But what we now have is that if Alice’s quantum ruler has
half a chance of being 22 cm long, and another half chance of measuring 18 cm, it may well
turn out that Bob instead perceives a quantum ruler of length 17 cm with probability a third,
and 14 cm two third of the times.

Allowing the Lorentz boosts � to act on ρ as on spacetime vectors thus seems a
radical departure from quantum field theories in Minkowski space, where the approach is
to seek unitary representations of the Poincaré group, i.e. the full Lorentz group together
with translations. However, Poincaré invariance (see [6] for example) does not require any
given state of a theory to transform unitarily under a change of observer: for any two inertial
observers Alice and Bob, it requires the existence, given any state of the theory possibly
measured by Alice in her frame, of another state of the theory measured by Bob in his frame,
such that the statistics of their measurement outcomes on their respective states be the same.
In this sense, the action of a particular Poincaré transform on a state in quantum field theory
corresponds to a change of inertial frame: it maps a given solution for an inertial family
of observers to another equivalent solution for another family of observers, hence it simply
cannot change the measurement statistics. Our second scenario does not involve a change of
inertial frame, but just a change of observer. It is true that nonetheless, Alice’s non-boosted
qubit viewed by a boosted observer Bob, though not necessarily unitarily equivalent to the
same non-boosted state viewed by Alice, should be an admissible state of the theory which
could be measured by Bob to yield measurement statistics with the usual properties. We are
not in this case, since in scenario 2, Bob is not performing a quantum operation on Alice’s
qubit. Note also that in the formalism developed above, pure states, whether viewed in their
inertial frame or not, remain pure.

But if we begin to think of quantum measurement outcome probabilities as not invariant
under Lorentz transformations, then the Von Neumann entropy should not be either. On the
other hand the invariant quantity ηµνρ

µ
ρ

ν
seems a good measure of the mixedness of ρ, an
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idea which is strongly supported by its equivalent form (11). With I (ρ) proportional to the
logarithm of ηµνρ

µ
ρ

ν
equation (9) becomes

I (ρm) = I (Vm) + I (ρ).

This result is rather interesting as an information conservation law.
The lines of thought suggested in this last section need to be anchored in firmer ground

and generalized to higher dimensional quantum systems. Although most of the mathematical
results of this paper stem from the exceptional isomorphism between Herm+

2(C) and the
future cone of Minkowski space, there is hope to find a special relativistic interpretation to
d-dimensional systems [1]. This is currently being investigated. More generally the
authors feel that the correspondence between qubit quantum operations and special relativity
transforms deserves further attention.
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